Quantifying multiscale noise sources in single-molecule time series.
نویسندگان
چکیده
When analyzing single-molecule data, a low-dimensional set of system observables typically serves as the observational data. We calibrate stochastic dynamical models from time series that record such observables. Numerical techniques for quantifying noise from multiple time scales in a single trajectory, including experimental instrument and inherent thermal noise, are demonstrated. The techniques are applied to study time series coming from both simulations and experiments associated with the nonequilibrium mechanical unfolding of titin's I27 domain. The estimated models can be used for several purposes, (1) detect dynamical signatures of "rare events" by analyzing the effective diffusion and force as a function of the monitored observable, (2) quantify the influence that conformational degrees of freedom, which are typically difficult to directly monitor experimentally, have on the dynamics of the monitored observable, (3) quantitatively compare the inherent thermal noise to other noise sources, for example, instrument noise, variation induced by conformational heterogeneity, and so forth, (4) simulate random quantities associated with repeated experiments, and (5) apply pathwise, that is, trajectory-wise, hypothesis tests to assess the goodness-of-fit of the models and even detect conformational transitions in noisy signals. These items are all illustrated with several examples.
منابع مشابه
Multiscale entropy analysis of complex physiologic time series.
There has been considerable interest in quantifying the complexity of physiologic time series, such as heart rate. However, traditional algorithms indicate higher complexity for certain pathologic processes associated with random outputs than for healthy dynamics exhibiting long-range correlations. This paradox may be due to the fact that conventional algorithms fail to account for the multiple...
متن کاملP-Splines Using Derivative Information
Time series associated with single-molecule experiments and/or simulations contain a wealth of multiscale information about complex biomolecular systems. We demonstrate how a collection of Penalized-splines (P-splines) can be useful in quantitatively summarizing such data. In this work, functions estimated using P-splines are associated with stochastic differential equations (SDEs). It is shown...
متن کاملPervasive white and colored noise removing from magnetotelluric time series
Magnetotellurics is an exploration method which is based on measurement of natural electric and magnetic fields of the Earth and is increasingly used in geological applications, petroleum industry, geothermal sources detection and crust and lithosphere studies. In this work, discrete wavelet transform of magnetotelluric signals was performed. Discrete wavelet transform decomposes signals into c...
متن کاملIntroduction and application of the multiscale coefficient of variation analysis.
Quantifying how patterns of behavior relate across multiple levels of measurement typically requires long time series for reliable parameter estimation. We describe a novel analysis that estimates patterns of variability across multiple scales of analysis suitable for time series of short duration. The multiscale coefficient of variation (MSCV) measures the distance between local coefficient of...
متن کاملCorrecting for bias of molecular confinement parameters induced by small-time-series sample sizes in single-molecule trajectories containing measurement noise.
Several single-molecule studies aim to reliably extract parameters characterizing molecular confinement or transient kinetic trapping from experimental observations. Pioneering works from single-particle tracking (SPT) in membrane diffusion studies [Kusumi et al., Biophys. J. 65, 2021 (1993)] appealed to mean square displacement (MSD) tools for extracting diffusivity and other parameters quanti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 113 1 شماره
صفحات -
تاریخ انتشار 2009